Get significant outliers from RDA model
rda_getoutliers.Rd
Get significant outliers from RDA model
Usage
rda_getoutliers(
mod,
naxes = "all",
outlier_method = "p",
p_adj = "fdr",
sig = 0.05,
z = 3,
plot = TRUE
)
Arguments
- naxes
number of RDA axes to use (defaults to "all" to use all axes), if set to "manual" a selection option with a terminal prompt will be given, otherwise can be any integer that is less than or equal to the total number of axes
- outlier_method
method to determine outliers. Can either be "p" to use the p-value method from here or "z" to use the z-score based method from here
- p_adj
if
outlier_method = "p"
, method to use for p-value correction (defaults to "fdr"); other options can be found inp.adjust()
- sig
if
outlier_method = "p"
, the significance level to use to identify SNPs (defaults to 0.05)- z
if
outlier_method = "z"
, the number of standard deviations to use to identify SNPs (defaults to 3)- plot
whether to produce scree plot of RDA axes (defaults to TRUE)
Value
results from outlier tests. If outlier_method = "p"
, a list of outlier SNPs, p-values, and results from rdadapt (see Capblancq et al. 2018). If outlier_method = "z"
, a dataframe with outlier SNP Z-scores for each axis
See also
Other RDA functions:
rda_cor()
,
rda_do_everything()
,
rda_plot()
,
rda_run()
,
rda_table()
,
rda_varpart()
,
rda_varpart_table()