
Package index
-
data_processing_packages() - Install data processing packages
-
gen_to_geno() - Convert dosage matrix or vcf to geno type object (N.B.: this only works for diploids!)
-
geno_to_dosage() - Convert lfmm/geno matrix to dosage matrix (N.B.: this only works for diploids!)
-
ld_prune() - ld_prune prunes SNPs based on linkage disequilibrium using
SNPRelateandSeqArraypackages -
simple_impute() - Impute NA values NOTE: use extreme caution when using this form of simplistic imputation. We mainly provide this code for creating test datasets and highly discourage its use in analyses.
-
str_impute() - Imputation of missing values using population structure inferred with
LEA::snmf -
vcf_to_dosage() - Convert a vcf to a dosage matrix
-
envirodata_packages() - Install environmental and geographic data processing packages
-
check_dists() - Check geographic and environmental distances for collinearity
-
check_env() - Check environmental layers for collinearity
-
check_vals() - Check extracted values for collinearity
-
env_dist() - Calculate distance between environmental vars
-
geo_dist() - Calculate geographic distance between coordinates
-
get_worldclim() - Download and merge WorldClim data for study area
-
rm_islands() - Remove islands from mapping
-
extrap_mask()range_mask()sd_mask()buffer_mask()chull_mask() - Create raster mask based on coordinates
-
masking_packages() - Install masking packages
-
gen_dist() - Calculate genetic distances
-
gen_dist_corr() - Plot the relationship between two distance metrics
-
gen_dist_hm() - Make heatmap of genetic distances
-
gen_dist_packages() - Install genetic distance packages
-
tess_barplot() - Create TESS barplot
-
tess_col_default() - Create default TESS color palette
-
tess_do_everything() - TESS function to do everything
-
tess_ggbarplot() - Create TESS barplot using ggplot2
-
tess_ggplot() - ggplot of TESS results
-
tess_krig() - Krige admixture values
-
tess_ktest() - Test multiple K values
-
tess_legend() - Create a custom legend for TESS maps
-
tess_packages() - Install TESS packages
-
tess_plot_allK() - Plot all kriged Q values for each K
-
bestK() - Best K Selection based on cross entropy
-
geom_tess() - Create geom of TESS results that can be added to a ggplot object
-
mmrr_df() - Make nice dataframe from MMRR results
-
mmrr_do_everything() - MMRR function to do everything
-
mmrr_packages() - Install MMRR packages
-
mmrr_plot() - Plot MMRR results
-
mmrr_run() - Run MMRR and return model object
-
mmrr_table() - Create
gttable of MMRR results -
mmrr_var_sel() - mmrr_var_sel performs MMRR with backward elimination variable selection
-
MMRR() - MMRR performs Multiple Matrix Regression with Randomization analysis
-
unfold() - unfold converts the lower diagonal elements of a matrix into a vector
-
gdm_coeffs() - Get coefficients for each predictor
-
gdm_df() - Create dataframe of GDM results
-
gdm_do_everything() - GDM function to do everything (fit model, get coefficients, make and save raster)
-
gdm_format() - Format Data for Generalized Dissimilarity Modeling (GDM)
-
gdm_map() - Make map from model
-
gdm_packages() - Install GDM packages
-
gdm_plot_diss() - Plot compositional dissimilarity spline plots
-
gdm_plot_isplines() - Plot I-splines for each variable
-
gdm_plot_vars() - Create a PCA plot for GDM
-
gdm_run() - Run GDM and return model object
-
gdm_table() - Create
gttable of GDM results -
gdm_var_sel() - Get best set of variables from a GDM model
-
gdm_varimp_table() - Generate a Variable Importance Table for GDM Models
-
scale01() - Scale genetic distances from 0 to 1
-
scaleRGB() - Scale three layers of environmental data to R, G, and B for mapping
-
rda_cor() - Genotype-environment correlation test
-
rda_do_everything() - RDA function to do everything
-
rda_getoutliers() - Get significant outliers from RDA model
-
rda_packages() - Install RDA packages
-
rda_plot() - Plot RDA results
-
rda_run() - Run RDA
-
rda_table() - Create
gttable of RDA results -
rda_varpart() - Partial RDA variance partitioning
-
rda_varpart_table() - Create
gttable with RDA variance partitioning results
-
lfmm_df() - Convert LFMM results into a tidy dataframe for downstream processing
-
lfmm_do_everything() - LFMM function to do everything
-
lfmm_manhattanplot() - LFMM Manhattan Plot
-
lfmm_packages() - Install LFMM packages
-
lfmm_qqplot() - LFMM QQplot
-
lfmm_run() - Run LFMM
-
lfmm_table() - Create
gttable of LFMM results -
select_K()select_K_tw()select_K_elbow()select_K_tess()select_K_fc() - K selection
-
quick_elbow() - Quickly choose an elbow for a PC
-
tw() - Tracy–Widom test
-
wingen_do_everything() - wingen function to do everything (preview and generate moving window maps, krige, and mask)
-
wingen_packages() - Install wingen packages
-
alazygatr_packages() - Install alazygatr packages
-
do_everything_for_me() - Lazy run of all landscape genomic analyses contained within
algatr
-
load_algatr_example() - Load example data
-
CA_env - Example environmental data, calculated by performing a raster PCA on 18 bioclimatic variables for state of California
-
liz_coords - Example coordinates from Bouzid et al. 2022
-
liz_gendist - Example genetic distance matrix, calculated with Plink using data from Bouzid et al. 2022
-
liz_vcf - Example VCF from Bouzid et al. 2022
-
coords_to_sf() - Convert from matrix, data frame, or sf to sf (sf is a pass through)
-
coords_to_sp() - Convert from matrix, data frame, or sf to formatted sp