Function reference
-
data_processing_packages()
- Install data processing packages
-
gen_to_geno()
- Convert dosage matrix or vcf to geno type object (N.B.: this only works for diploids!)
-
geno_to_dosage()
- Convert lfmm/geno matrix to dosage matrix (N.B.: this only works for diploids!)
-
ld_prune()
- ld_prune prunes SNPs based on linkage disequilibrium using
SNPRelate
andSeqArray
packages
-
simple_impute()
- Impute NA values NOTE: use extreme caution when using this form of simplistic imputation. We mainly provide this code for creating test datasets and highly discourage its use in analyses.
-
str_impute()
- Imputation of missing values using population structure inferred with
LEA::snmf
-
vcf_to_dosage()
- Convert a vcf to a dosage matrix
-
envirodata_packages()
- Install environmental and geographic data processing packages
-
check_dists()
- Check geographic and environmental distances for collinearity
-
check_env()
- Check environmental layers for collinearity
-
check_vals()
- Check extracted values for collinearity
-
env_dist()
- Calculate distance between environmental vars
-
geo_dist()
- Calculate geographic distance between coordinates
-
get_worldclim()
- Download and merge WorldClim data for study area
-
rm_islands()
- Remove islands from mapping
-
extrap_mask()
range_mask()
sd_mask()
buffer_mask()
chull_mask()
- Create raster mask based on coordinates
-
plot_extrap_mask()
- Plot mask on top of map
-
masking_packages()
- Install masking packages
-
gen_dist()
- Calculate genetic distances
-
gen_dist_corr()
- Plot the relationship between two distance metrics
-
gen_dist_hm()
- Make heatmap of genetic distances
-
gen_dist_packages()
- Install genetic distance packages
-
tess_barplot()
- Create TESS barplot
-
tess_col_default()
- Create default TESS color palette
-
tess_do_everything()
- TESS function to do everything
-
tess_ggbarplot()
- Create TESS barplot using ggplot2
-
tess_ggplot()
- ggplot of TESS results
-
tess_krig()
- Krige admixture values
-
tess_ktest()
- Test multiple K values
-
tess_legend()
- Create a custom legend for TESS maps
-
tess_packages()
- Install TESS packages
-
tess_plot_allK()
- Plot all kriged Q values for each K
-
bestK()
- Best K Selection based on cross entropy
-
geom_tess()
- Create geom of TESS results that can be added to a ggplot object
-
mmrr_df()
- Make nice dataframe from MMRR results
-
mmrr_do_everything()
- MMRR function to do everything
-
mmrr_packages()
- Install MMRR packages
-
mmrr_plot()
- Plot MMRR results
-
mmrr_run()
- Run MMRR and return model object
-
mmrr_table()
- Create
gt
table of MMRR results
-
mmrr_var_sel()
- mmrr_var_sel performs MMRR with backward elimination variable selection
-
MMRR()
- MMRR performs Multiple Matrix Regression with Randomization analysis
-
unfold()
- unfold converts the lower diagonal elements of a matrix into a vector
-
gdm_coeffs()
- Get coefficients for each predictor
-
gdm_df()
- Create dataframe of GDM results
-
gdm_do_everything()
- GDM function to do everything (fit model, get coefficients, make and save raster)
-
gdm_format()
- Format Data for Generalized Dissimilarity Modeling (GDM)
-
gdm_map()
- Make map from model
-
gdm_packages()
- Install GDM packages
-
gdm_plot_diss()
- Plot compositional dissimilarity spline plots
-
gdm_plot_isplines()
- Plot I-splines for each variable
-
gdm_plot_vars()
- Create a PCA plot for GDM
-
gdm_run()
- Run GDM and return model object
-
gdm_table()
- Create
gt
table of GDM results
-
gdm_var_sel()
- Get best set of variables from a GDM model
-
gdm_varimp_table()
- Generate a Variable Importance Table for GDM Models
-
scale01()
- Scale genetic distances from 0 to 1
-
scaleRGB()
- Scale three layers of environmental data to R, G, and B for mapping
-
rda_cor()
- Genotype-environment correlation test
-
rda_do_everything()
- RDA function to do everything
-
rda_getoutliers()
- Get significant outliers from RDA model
-
rda_packages()
- Install RDA packages
-
rda_plot()
- Plot RDA results
-
rda_run()
- Run RDA
-
rda_table()
- Create
gt
table of RDA results
-
rda_varpart()
- Partial RDA variance partitioning
-
rda_varpart_table()
- Create
gt
table with RDA variance partitioning results
-
lfmm_df()
- Convert LFMM results into a tidy dataframe for downstream processing
-
lfmm_do_everything()
- LFMM function to do everything
-
lfmm_manhattanplot()
- LFMM Manhattan Plot
-
lfmm_packages()
- Install LFMM packages
-
lfmm_qqplot()
- LFMM QQplot
-
lfmm_run()
- Run LFMM
-
lfmm_table()
- Create
gt
table of LFMM results
-
quick_elbow()
- Quickly choose an elbow for a PC
-
wingen_do_everything()
- wingen function to do everything (preview and generate moving window maps, krige, and mask)
-
wingen_packages()
- Install wingen packages
-
alazygatr_packages()
- Install alazygatr packages
-
do_everything_for_me()
- Lazy run of all landscape genomic analyses contained within
algatr
-
load_algatr_example()
- Load example data
-
CA_env
- Example environmental data, calculated by performing a raster PCA on 18 bioclimatic variables for state of California
-
liz_coords
- Example coordinates from Bouzid et al. 2022
-
liz_gendist
- Example genetic distance matrix, calculated with Plink using data from Bouzid et al. 2022
-
liz_vcf
- Example VCF from Bouzid et al. 2022
-
coords_to_sf()
- Convert from matrix, data frame, or sf to sf (sf is a pass through)
-
coords_to_sp()
- Convert from matrix, data frame, or sf to formatted sp